Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.401
Filtrar
1.
Arch Virol ; 169(4): 74, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480558

RESUMO

Triple motif protein 21 (TRIM21) has an antiviral function that inhibits various viral infections. However, its role in the progress of influenza A virus (IAV) infection is unclear. In this study, we investigated the role and molecular mechanism of TRIM21 in IAV infection. RT-qPCR was used to determine the level of TRIM21 mRNA, and ELISA was used to measure the levels of IFN-α, IFN-ß, IL-6, and TNF-α. The levels of the TRIM21, NP, TBK1, IRF3, p-TBK1, and p-IRF3 proteins were estimated by Western blot. The results showed that, after IAV infection, TRIM21 was upregulated in clinical patient serum and A549 cells, and this was correlated with the IFN response. Overexpression of TRIM21 reduced IAV replication and transcription in in vitro cell experiments. TRIM21 also increased IFN-α and IFN-ß levels and decreased IL-6 and TNF-α levels in A549 cells. In addition, overexpression of TRIM21 inhibited IAV-induced apoptosis. Further experiments demonstrated that TBK1-IRF3 signaling was activated by TRIM21 and was involved in the inhibitory effect of TRIM21 on virus replication. In summary, our study suggests that TRIM21 inhibits viral replication by activating the TBK1-IRF3 signaling pathway, further inhibiting the infection process of IAV.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Células A549 , Inflamação , Vírus da Influenza A/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon-alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Cell Rep ; 43(3): 113788, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38461415

RESUMO

Histone deacetylases (HDACs) regulate gene expression and innate immunity. Previously, we showed that HDAC5 is degraded during Vaccinia virus (VACV) infection and is a restriction factor for VACV and herpes simplex virus type 1. Here, we report that HDAC5 promotes interferon regulatory factor 3 (IRF3) activation downstream of Toll-IL-1 receptor (TIR) domain-containing adaptor molecule-1 or Sendai virus-mediated stimulation without requiring HDAC activity. Loss of HDAC5-mediated IRF3 activation is restored by re-introduction of HDAC5 but not HDAC1 or HDAC4. The antiviral activity of HDAC5 is antagonized by VACV protein C6 and orthologs from the orthopoxviruses cowpox, rabbitpox, camelpox, monkeypox, and variola. Infection by many of these viruses induces proteasomal degradation of HDAC5, and expression of C6 alone can induce HDAC5 degradation. Mechanistically, C6 binds to the dimerization domain of HDAC5 and prevents homodimerization and heterodimerization with HDAC4. Overall, this study describes HDAC5 as a positive regulator of IRF3 activation and provides mechanistic insight into how the poxviral protein C6 binds to HDAC5 to antagonize its function.


Assuntos
Orthopoxvirus , Vírus da Varíola , Vírus da Varíola dos Macacos/metabolismo , Vírus da Varíola/metabolismo , Orthopoxvirus/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Vírus Vaccinia/fisiologia , Histona Desacetilases/metabolismo
3.
Eur J Pharmacol ; 969: 176428, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432572

RESUMO

BACKGROUND: Morphine tolerance has been a challenging medical issue. Neuroinflammation is considered as a critical mechanism for the development of morphine tolerance. Bromodomain-containing protein 4 (BRD4), a key regulator in cell damage and inflammation, participates in the development of chronic pain. However, whether BRD4 is involved in morphine tolerance and the underlying mechanisms remain unknown. METHODS: The morphine-tolerant rat model was established by intrathecal administration of morphine twice daily for 7 days. Behavior test was assessed by a tail-flick latency test. The roles of BRD4, pyroptosis, microglia polarization and related signaling pathways in morphine tolerance were elucidated by Western blot, real-time quantitative polymerase chain reaction, and immunofluorescence. RESULTS: Repeated morphine administration upregulated BRD4 level, induced pyroptosis, and promoted microglia M1-polarization in spinal cord, accompanied by the release of proinflammatory cytokines, such as TNF-α and IL-1ß. JQ-1, a BRD4 antagonist, alleviated the development of morphine tolerance, diminished pyroptosis and induced the switch of microglia from M1 to M2 phenotype. Mechanistically, stimulator of interferon gene (STING)- interferon regulatory factor 3 (IRF3) pathway was activated and the protective effect of JQ-1 against morphine tolerance was at least partially mediated by inhibition of STING-IRF3 pathway. CONCLUSION: This study demonstrated for the first time that spinal BRD4 contributes to pyroptosis and switch of microglia polarization via STING-IRF3 signaling pathway during the development of morphine tolerance, which extend the understanding of the neuroinflammation mechanism of morphine tolerance and provide an alternative strategy for the precaution against of this medical condition.


Assuntos
Microglia , Morfina , Ratos , Animais , Proteínas Nucleares/metabolismo , Analgésicos Opioides/farmacologia , Doenças Neuroinflamatórias , Fator Regulador 3 de Interferon/metabolismo , Piroptose
4.
Aging (Albany NY) ; 16(7): 5887-5904, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517396

RESUMO

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.


Assuntos
Injúria Renal Aguda , Cordyceps , Fator Regulador 3 de Interferon , Células Matadoras Naturais , Proteínas de Membrana , Perforina , Transdução de Sinais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Animais , Cordyceps/química , Perforina/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL
5.
J Innate Immun ; 16(1): 226-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527452

RESUMO

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Assuntos
Adenoviridae , Citocinas , Fator Regulador 3 de Interferon , Lipopolissacarídeos , Macrófagos , Camundongos Knockout , Animais , Camundongos , Lipopolissacarídeos/imunologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Macrófagos/imunologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Vetores Genéticos , Infecções por Adenoviridae/imunologia , Interferon Tipo I/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Interferon beta/metabolismo
6.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439718

RESUMO

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon , Sequência de Bases , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Mutação , Fator de Transcrição AP-1/metabolismo , Humanos , Células HEK293
7.
Antiviral Res ; 225: 105875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552910

RESUMO

The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-ß. The increased IFN-ß production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.


Assuntos
Herpesvirus Humano 1 , Interferon Tipo I , Viroses , Animais , Camundongos , Interferons/metabolismo , Interferon beta/metabolismo , Transdução de Sinais , Diclorodifenil Dicloroetileno/metabolismo , Replicação Viral , Herpesvirus Humano 1/genética , Antivirais/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteína DEAD-box 20/metabolismo
8.
Front Immunol ; 15: 1336813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375470

RESUMO

Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-ß (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-ß) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Inflamação , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo
9.
Sci Adv ; 10(9): eadj2102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416816

RESUMO

Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferons/metabolismo
10.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396775

RESUMO

DP96R of African swine fever virus (ASFV), also known as uridine kinase (UK), encodes a virulence-associated protein. Previous studies have examined DP96R along with other genes in an effort to create live attenuated vaccines. While experiments in pigs have explored the impact of DP96R on the pathogenicity of ASFV, the precise molecular mechanism underlying this phenomenon remains unknown. Here, we describe a novel molecular mechanism by which DP96R suppresses interferon regulator factor-3 (IRF3)-mediated antiviral immune responses. DP96R interacts with a crucial karyopherin (KPNA) binding site within IRF3, disrupting the KPNA-IRF3 interaction and consequently impeding the translocation of IRF3 to the nucleus. Under this mechanistic basis, the ectopic expression of DP96R enhances the replication of DNA and RNA viruses by inhibiting the production of IFNs, whereas DP96R knock-down resulted in higher IFNs and IFN-stimulated gene (ISG) transcription during ASFV infection. Collectively, these findings underscore the pivotal role of DP96R in inhibiting IFN responses and increase our understanding of the relationship between DP96R and the virulence of ASFV.


Assuntos
Vírus da Febre Suína Africana , Fator Regulador 3 de Interferon , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Interferons/metabolismo , Suínos , Proteínas Virais/metabolismo , Virulência , Fatores de Virulência/genética , Fator Regulador 3 de Interferon/metabolismo , Humanos , Interferon Tipo I/metabolismo
11.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421179

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Assuntos
NF-kappa B , Febre Grave com Síndrome de Trombocitopenia , Humanos , NF-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , Nucleotidiltransferases/metabolismo , Interferons/metabolismo , Antivirais , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
12.
Dig Dis Sci ; 69(2): 491-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170337

RESUMO

BACKGROUND AND AIM: Previous reports have suggested IFI16 as a tumor suppressor in hepatocellular carcinoma (HC). Nonetheless, the biological significance of IFI16 and its mechanism concerning resistance to cisplatin (DDP) in HC requires further exploration. METHODS: Samples of tumor and corresponding para-carcinoma tissues were acquired from patients with HC. Furthermore, DDP-resistant cell lines of HC, specifically HCC, Huh7 and Hepatoblastoma, HepG3, were generated by gradually increasing the concentration of DDP. Cell apoptosis and DNA damage were evaluated by utilizing flow cytometry assay and TUNEL staining. The interaction between IFI16 and interferon regulatory factor 3 (IRF3) proteins were analyzed using Co-Immunoprecipitation (Co-IP) assay. In vivo assays were conducted by establishing HC subcutaneous xenograft tumor models. RESULTS: The study found a reduction in IFI16 expression in both HC tissues and DDP-resistant HC cell lines. The binding of IFI16 to IRF3 regulated DNA damage-associated markers in vitro. Overexpression of IFI16 heightened the susceptibility of DDP-induced apoptosis and DNA damage, which was counteracted by IRF3 knockdown, while strengthened by IRF3 overexpression. Moreover, overexpression of IFI16 diminished in vivo DDP-resistant HC tumorigenicity. CONCLUSION: In summary, our findings suggest that IFI16 serves as a tumor suppressor in HC by promoting DNA damage via its interaction with IRF3, thereby reversing DDP resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Interferon gama , Fator Regulador 3 de Interferon/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células
13.
Viruses ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257840

RESUMO

The ongoing COVID-19 pandemic has revealed the shortfalls in our understanding of how to treat coronavirus infections. With almost 7 million case fatalities of COVID-19 globally, the catalog of FDA-approved antiviral therapeutics is limited compared to other medications, such as antibiotics. All-trans retinoic acid (RA), or activated vitamin A, has been studied as a potential therapeutic against coronavirus infection because of its antiviral properties. Due to its impact on different signaling pathways, RA's mechanism of action during coronavirus infection has not been thoroughly described. To determine RA's mechanism of action, we examined its effect against a mouse coronavirus, mouse hepatitis virus strain A59 (MHV). We demonstrated that RA significantly decreased viral titers in infected mouse L929 fibroblasts and RAW 264.7 macrophages. The reduced viral titers were associated with a corresponding decrease in MHV nucleocapsid protein expression. Using interferon regulatory factor 3 (IRF3) knockout RAW 264.7 cells, we demonstrated that RA-induced suppression of MHV required IRF3 activity. RNA-seq analysis of wildtype and IRF3 knockout RAW cells showed that RA upregulated calcium/calmodulin (CaM) signaling proteins, such as CaM kinase kinase 1 (CaMKK1). When treated with a CaMKK inhibitor, RA was unable to upregulate IRF activation during MHV infection. In conclusion, our results demonstrate that RA-induced protection against coronavirus infection depends on IRF3 and CaMKK.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Fator Regulador 3 de Interferon , Vírus da Hepatite Murina , Tretinoína , Replicação Viral , Animais , Camundongos , Aminoácidos , Antivirais/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Tretinoína/farmacologia , Replicação Viral/efeitos dos fármacos , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/fisiologia , Células RAW 264.7 , Células L
14.
Phytomedicine ; 124: 155280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183697

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS: Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS: Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION: Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.


Assuntos
Hidroxietilrutosídeo/análogos & derivados , Síndrome do Ovário Policístico , Receptores de Interleucina , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Di-Hidrotestosterona/efeitos adversos , Di-Hidrotestosterona/metabolismo , Microglia , Doenças Neuroinflamatórias , 60552 , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/efeitos adversos , Hormônio Liberador de Gonadotropina/metabolismo , Fator Regulador 3 de Interferon/metabolismo
15.
Cell Commun Signal ; 22(1): 48, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233853

RESUMO

BACKGROUND: Interferon Regulatory Factor 3 (IRF3) is a transcription factor that plays a crucial role in the innate immune response by recognizing and responding to foreign antigens. Recently, its roles in sterile conditions are being studied, as in metabolic and fibrotic diseases. However, the search on the upstream regulator for efficient pharmacological targeting is yet to be fully explored. Here, we show that G protein-coupled receptors (GPCRs) can regulate IRF3 phosphorylation through of GPCR-Gα protein interaction. RESULTS: IRF3 and target genes were strongly associated with fibrosis markers in liver fibrosis patients and models. Conditioned media from MIHA hepatocytes overexpressing IRF3 induced fibrogenic activation of LX-2 hepatic stellate cells (HSCs). In an overexpression library screening using active mutant Gα subunits and Phos-tag immunoblotting, Gαs was found out to strongly phosphorylate IRF3. Stimulation of Gαs by glucagon or epinephrine or by Gαs-specific designed GPCR phosphorylated IRF3. Protein kinase A (PKA) signaling was primarily responsible for IRF3 phosphorylation and Interleukin 33 (IL-33) expression downstream of Gαs. PKA phosphorylated IRF3 on a previously unrecognized residue and did not require reported upstream kinases such as TANK-binding kinase 1 (TBK1). Activation of Gαs signaling by glucagon induced IL-33 production in hepatocytes. Conditioned media from the hepatocytes activated HSCs, as indicated by α-SMA and COL1A1 expression, and this was reversed by pre-treatment of the media with IL-33 neutralizing antibody. CONCLUSIONS: Gαs-coupled GPCR signaling increases IRF3 phosphorylation through cAMP-mediated activation of PKA. This leads to an increase of IL-33 expression, which further contributes to HSC activation. Our findings that hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation provides an insight for understanding the complex intercellular communication during liver fibrosis progression and suggests therapeutic opportunities for the disease. Video Abstract.


Assuntos
Células Estreladas do Fígado , Interleucina-33 , Humanos , Interleucina-33/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdiferenciação Celular , Meios de Cultivo Condicionados , Glucagon/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fibrose
16.
Virol J ; 21(1): 33, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287375

RESUMO

BACKGROUND: Influenza A virus (IAV) can cause severe and life-threatening illness in humans and animals. Therefore, it is important to search for host antiviral proteins and elucidate their antiviral mechanisms for the development of potential treatments. As a part of human innate immunity, host restriction factors can inhibit the replication of viruses, among which SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) can restrict the replication of viruses, such as HIV and enterovirus EV71. Viruses also developed countermeasures in the arms race with their hosts. There are few reports about whether SAMHD1 has a restriction effect on IAV. METHODS: To investigate the impact of IAV infection on SAMHD1 expression in A549 cells, we infected A549 cells with a varying multiplicity of infection (MOI) of IAV and collected cell samples at different time points for WB and RT-qPCR analysis to detect viral protein and SAMHD1 levels. The virus replication level in the cell culture supernatant was determined using TCID50 assay. Luciferase assay was used to reveal that H5N1 virus polymerase acidic protein (PA) affected the activity of the SAMHD1 promoter. To assess the antiviral capacity of SAMHD1, we generated a knockdown and overexpressed cell line for detecting H5N1 replication. RESULTS: In this study, we observed that SAMHD1 can restrict the intracellular replication of H5N1 and that the H5N1 viral protein PA can downregulate the expression of SAMHD1 by affecting SAMHD1 transcriptional promoter activity. We also found that SAMHD1's ability to restrict H5N1 is related to phosphorylation at 592-tyrosine. CONCLUSIONS: In conclusion, we found that SAMHD1 may affect the replication of IAVs as a host restriction factor and be countered by PA. Furthermore, SAMHD1 may be a potential target for developing antiviral drugs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Humanos , Vírus da Influenza A/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral , Proteínas Virais/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Fator Regulador 3 de Interferon/metabolismo
17.
J Immunol ; 212(1): 7-11, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038390

RESUMO

The 2'3'-cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of IFN genes (STING) pathway can sense infection and cellular stress by detecting cytosolic DNA. Upon ligand binding, cGAS produces the cyclic dinucleotide messenger cGAMP, which triggers its receptor STING. Active STING initiates gene transcription through the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB and induces autophagy, but whether STING can cause changes in the metabolism of macrophages is unknown. In this study, we report that STING signaling activates ATP-citrate lyase (ACLY) by phosphorylation in human macrophages. Using genetic and pharmacologic perturbation, we show that STING targets ACLY via its prime downstream signaling effector TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1). We further identify that TBK1 alters cellular metabolism upon cGAMP treatment. Our results suggest that STING-mediated metabolic reprogramming adjusts the cellular response to DNA sensing in addition to transcription factor activation and autophagy induction.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Humanos , ATP Citrato (pro-S)-Liase/metabolismo , DNA , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
18.
Cancer Gene Ther ; 31(1): 28-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990062

RESUMO

Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-ß) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-ß in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.


Assuntos
Interferon Tipo I , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , DNA , Linhagem Celular , Interferon Tipo I/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Quimiocina CCL22/metabolismo
19.
J Transl Med ; 21(1): 884, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057852

RESUMO

BACKGROUND: Advanced prostate cancer (PCa) will develop into castration-resistant prostate cancer (CRPC) and lead to poor prognosis. As the primary subtype of CRPC, CRPC-AR accounts for the major induction of PCa heterogeneity. CRPC-AR is mainly driven by 25 transcription factors (TFs), which we speculate may be the key factors driving PCa toward CRPC. Therefore, it is necessary to clarify the key regulator and its molecular mechanism mediating PCa progression. METHODS: Firstly, we downloaded transcriptomic data and clinical information from TCGA-PRAD. The characteristic gene cluster was identified by PPI clustering, GO enrichment, co-expression correlation and clinical feature analyses for 25 TFs. Then, the effects of 25 TFs expression on prognosis of PCa patients was analyzed using univariate Cox regression, and the target gene was identified. The expression properties of the target gene in PCa tissues were verified using tissue microarray. Meanwhile, the related mechanistic pathway of the target gene was mined based on its function. Next, the target gene was silenced by small interfering RNAs (siRNAs) for cellular function and mechanistic pathway validation. Finally, CIBERSORT algorithm was used to analyze the infiltration levels of 22 immune cells in PCa patients with low and high expression of target gene, and validated by assaying the expression of related immunomodulatory factor. RESULTS: We found that HOX family existed independently in 25 TFs, among which HOXC10, HOXC12 and HOXC13 had unique clinical features and the PCa patients with high HOXC13 expression had the worst prognosis. In addition, HOXC13 was highly expressed in tumor tissues and correlated with Gleason score and pathological grade. In vitro experiments demonstrated that silencing HOXC13 inhibited 22RV1 and DU145 cell function by inducing cellular DNA damage and activating cGAS/STING/IRF3 pathway. Immune infiltration analysis revealed that high HOXC13 expression suppressed infiltration of γδ T cells and plasma cells and recruited M2 macrophages. Consistent with these results, silencing HOXC13 up-regulated the transcriptional expression of IFN-ß, CCL2, CCL5 and CXCL10. CONCLUSION: HOXC13 regulates PCa progression by mediating the DNA damage-induced cGAS/STING/IRF3 pathway and remodels TIME through regulation of the transcription of the immune factors IFN-ß, CCL2, CCL5 and CXCL10.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Dano ao DNA , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
20.
J Virol ; 97(11): e0130623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37943055

RESUMO

IMPORTANCE: In this study, we have found that the existence of Smyd3 promoted the replication of SCRV. Additionally, we report that Smyd3 negatively regulates the NF-κB and IRF3 signaling pathway by facilitating the degradation of TAK1 in fish. Our findings suggest that Smyd3 interacts with TAK1. Further investigations have revealed that Smyd3 specifically mediates K48-linked ubiquitination of TAK1 and enhances TAK1 degradation, resulting in a significant inhibition of the NF-κB and IRF3 signaling pathway. These results not only contribute to the advancement of fish anti-viral immunity but also provide new evidence for understanding the mechanism of TAK1 in mammals.


Assuntos
Doenças dos Peixes , Fator Regulador 3 de Interferon , MAP Quinase Quinase Quinases , NF-kappa B , Transdução de Sinais , Animais , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Ubiquitinação , Doenças dos Peixes/virologia , Peixes , Rhabdoviridae , Fator Regulador 3 de Interferon/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...